philosophy of science

Image result for science                                                     philosophy of science!
Philosophy of science is a sub-field of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ultimate purpose of science. This discipline overlaps with metaphysicsontology, and epistemology, for example, when it explores the relationship between science and truth.
There is no consensus among philosophers about many of the central problems concerned with the philosophy of science, including whether science can reveal the truth about unobservable things and whether scientific reasoning can be justified at all. In addition to these general questions about science as a whole, philosophers of science consider problems that apply to particular sciences (such as biology or physics). Some philosophers of science also use contemporary results in science to reach conclusions about philosophy itself.
While philosophical thought pertaining to science dates back at least to the time of Aristotle, philosophy of science emerged as a distinct discipline only in the 20th century in the wake of the logical positivism movement, which aimed to formulate criteria for ensuring all philosophical statements' meaningfulness and objectively assessing them. Thomas Kuhn's 1962 book The Structure of Scientific Revolutions was also formative, challenging the view of scientific progress as steady, cumulative acquisition of knowledge based on a fixed method of systematic experimentation and instead arguing that any progress is relative to a "paradigm," the set of questions, concepts, and practices that define a scientific discipline in a particular historical period.[1] Karl Popper and Charles Sanders Peircemoved on from positivism to establish a modern set of standards for scientific methodology.
Subsequently, the coherentist approach to science, in which a theory is validated if it makes sense of observations as part of a coherent whole, became prominent due to W. V. Quine and others. Some thinkers such as Stephen Jay Gould seek to ground science in axiomatic assumptions, such as the uniformity of nature. A vocal minority of philosophers, and Paul Feyerabend (1924–1994) in particular, argue that there is no such thing as the "scientific method", so all approaches to science should be allowed, including explicitly supernatural ones. Another approach to thinking about science involves studying how knowledge is created from a sociological perspective, an approach represented by scholars like David Bloor and Barry Barnes. Finally, a tradition in continental philosophy approaches science from the perspective of a rigorous analysis of human experience.
Philosophies of the particular sciences range from questions about the nature of time raised by Einstein's general relativity, to the implications of economics for public policy. A central theme is whether one scientific discipline can be reduced to the terms of another. That is, can chemistry be reduced to physics, or can sociology be reduced to individual psychology? The general questions of philosophy of science also arise with greater specificity in some particular sciences. For instance, the question of the validity of scientific reasoning is seen in a different guise in the foundations of statistics. The question of what counts as science and what should be excluded arises as a life-or-death matter in the philosophy of medicine. Additionally, the philosophies of biology, of psychology, and of the social sciences explore whether the scientific studies of human nature can achieve objectivity or are inevitably shaped by values and by social relations

                                                       DEFINING SCIENCE

        
Distinguishing between science and non-science is referred to as the demarcation problem. For example, should psychoanalysis be considered science? How about so-called creation science, the inflationary multiverse hypothesis, or macroeconomics? Karl Popper called this the central question in the philosophy of science.[2] However, no unified account of the problem has won acceptance among philosophers, and some regard the problem as unsolvable or uninteresting.[3][4] Martin Gardner has argued for the use of a Potter Stewart standard ("I know it when I see it") for recognizing pseudoscience.[5]


Early attempts by the logical positivists grounded science in observation while non-science was non-observational and hence meaningless.[6]Popper argued that the central property of science is falsifiability. That is, every genuinely scientific claim is capable of being proven false, at least in principle.[7]
An area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is referred to as pseudosciencefringe science, or junk science.[8] Physicist Richard Feynman coined the term "cargo cult science" for cases in which researchers believe they are doing science because their activities have the outward appearance of it but actually lack the "kind of utter honesty" that allows their results to be rigorously evaluated.[9]

Image result for science


                                                          JUSTIFYING SCIENCE.

Although it is often taken for granted, it is not at all clear how one can infer the validity of a general statement from a number of specific instances or infer the truth of a theory from a series of successful tests.[14] For example, a chicken observes that each morning the farmer comes and gives it food, for hundreds of days in a row. The chicken may therefore use inductive reasoning to infer that the farmer will bring food every morning. However, one morning, the farmer comes and kills the chicken. How is scientific reasoning more trustworthy than the chicken's reasoning?
One approach is to acknowledge that induction cannot achieve certainty, but observing more instances of a general statement can at least make the general statement more probable. So the chicken would be right to conclude from all those mornings that it is likely the farmer will come with food again the next morning, even if it cannot be certain. However, there remain difficult questions about the process of interpreting any given evidence into a probability that the general statement is true. One way out of these particular difficulties is to declare that all beliefs about scientific theories are subjective, or personal, and correct reasoning is merely about how evidence should change one's subjective beliefs over time.[14]
Some argue that what scientists do is not inductive reasoning at all but rather abductive reasoning, or inference to the best explanation. In this account, science is not about generalizing specific instances but rather about hypothesizing explanations for what is observed. As discussed in the previous section, it is not always clear what is meant by the "best explanation." Ockham's razor, which counsels choosing the simplest available explanation, thus plays an important role in some versions of this approach. To return to the example of the chicken, would it be simpler to suppose that the farmer cares about it and will continue taking care of it indefinitely or that the farmer is fattening it up for slaughter? Philosophers have tried to make this heuristic principle more precise in terms of theoretical parsimony or other measures. Yet, although various measures of simplicity have been brought forward as potential candidates, it is generally accepted that there is no such thing as a theory-independent measure of simplicity. In other words, there appear to be as many different measures of simplicity as there are theories themselves, and the task of choosing between measures of simplicity appears to be every bit as problematic as the job of choosing between theories.[15]Nicholas Maxwell has argued for some decades that unity rather than simplicity is the key non-empirical factor in influencing choice of theory in science, persistent preference for unified theories in effect committing science to the acceptance of a metaphysical thesis concerning unity in nature. In order to improve this problematic thesis, it needs to be represented in the form of a hierarchy of theses, each thesis becoming more insubstantial as one goes up the hierarchy[16]



                                                                           OBSERVATION INSEREBALE OF THEORY.
When making observations, scientists look through telescopes, study images on electronic screens, record meter readings, and so on. Generally, on a basic level, they can agree on what they see, e.g., the thermometer shows 37.9 degrees C. But, if these scientists have different ideas about the theories that have been developed to explain these basic observations, they may disagree about what they are observing. For example, before Albert Einstein's general theory of relativity, observers would have likely interpreted the image at right as five different objects in space. In light of that theory, however, astronomers will tell you that there are actually only two objects, one in the center and four different images of a second object around the sides. Alternatively, if other scientists suspect that something is wrong with the telescope and only one object is actually being observed, they are operating under yet another theory. Observations that cannot be separated from theoretical interpretation are said to be theory-laden.[17]
All observation involves both perception and cognition. That is, one does not make an observation passively, but rather is actively engaged in distinguishing the phenomenon being observed from surrounding sensory data. Therefore, observations are affected by one's underlying understanding of the way in which the world functions, and that understanding may influence what is perceived, noticed, or deemed worthy of consideration. In this sense, it can be argued that all observation is theory-laden.[17]

The purpose of science[edit]

Should science aim to determine ultimate truth, or are there questions that science cannot answerScientific realists claim that science aims at truth and that one ought to regard scientific theories as true, approximately true, or likely true. Conversely, scientific anti-realists argue that science does not aim (or at least does not succeed) at truth, especially truth about unobservables like electrons or other universes.[18] Instrumentalists argue that scientific theories should only be evaluated on whether they are useful. In their view, whether theories are true or not is beside the point, because the purpose of science is to make predictions and enable effective technology.
Realists often point to the success of recent scientific theories as evidence for the truth (or near truth) of current theories.[19][20] Antirealists point to either the many false theories in the history of science,[21][22] epistemic morals,[23] the success of false modeling assumptions,[24] or widely termed postmodern criticisms of objectivity as evidence against scientific realism.[19] Antirealists attempt to explain the success of scientific theories without reference to truth.[25] Some antirealists claim that scientific theories aim at being accurate only about observable objects and argue that their success is primarily judged by that criterion.[23]

Values and science[edit]

Values intersect with science in different ways. There are epistemic values that mainly guide the scientific research. The scientific enterprise is embedded in particular culture and values through individual practitioners. Values emerge from science, both as product and process and can be distributed among several cultures in the society.
If it is unclear what counts as science, how the process of confirming theories works, and what the purpose of science is, there is considerable scope for values and other social influences to shape science. Indeed, values can play a role ranging from determining which research gets funded to influencing which theories achieve scientific consensus.[26] For example, in the 19th century, cultural values held by scientists about race shaped research on evolution, and values concerning social class influenced debates on phrenology(considered scientific at the time).[27] Feminist philosophers of science, sociologists of science, and others explore how social values affect science


                                                                
                                                                               PHILOSOPHY THINKER

Image result for philosophy of science images


                                                                       HISTORY.

The origins of philosophy of science trace back to Plato and Aristotle[28] who distinguished the forms of approximate and exact reasoning, set out the threefold scheme of abductivedeductive, and inductive inference, and also analyzed reasoning by analogy. The eleventh century Arab polymath Ibn al-Haytham (known in Latin as Alhazen) conducted his research in optics by way of controlled experimental testing and applied geometry, especially in his investigations into the images resulting from the reflection and refraction of light. Roger Bacon (1214–1294), an English thinker and experimenter heavily influenced by al-Haytham, is recognized by many to be the father of modern scientific method.[29] His view that mathematics was essential to a correct understanding of natural philosophy was considered to be 400 years ahead of its time.[30]

Modern[edit]


Francis Bacon's statue at Gray's Inn, South Square, London
Francis Bacon (no direct relation to Roger, who lived 300 years earlier) was a seminal figure in philosophy of science at the time of the Scientific Revolution. In his work Novum Organum (1620) – an allusion to Aristotle's Organon – Bacon outlined a new system of logic to improve upon the old philosophical process of syllogism. Bacon's method relied on experimental histories to eliminate alternative theories.[31]In 1637, René Descartes established a new framework for grounding scientific knowledge in his treatise, Discourse on Method, advocating the central role of reason as opposed to sensory experience. By contrast, in 1713, the 2nd edition of Isaac Newton's Philosophiae Naturalis Principia Mathematica argued that "... hypotheses ... have no place in experimental philosophy. In this philosophy[,] propositions are deduced from the phenomena and rendered general by induction. "[32] This passage influenced a "later generation of philosophically-inclined readers to pronounce a ban on causal hypotheses in natural philosophy." [32] In particular, later in the 18th century, David Hume would famously articulate skepticism about the ability of science to determine causality and gave a definitive formulation of the problem of induction. The 19th century writings of John Stuart Mill are also considered important in the formation of current conceptions of the scientific method, as well as anticipating later accounts of scientific explanation.[33]

Logical positivism[edit]

Instrumentalism became popular among physicists around the turn of the 20th century, after which logical positivism defined the field for several decades. Logical positivism accepts only testable statements as meaningful, rejects metaphysical interpretations, and embraces verificationism (a set of theories of knowledge that combines logicismempiricism, and linguistics to ground philosophy on a basis consistent with examples from the empirical sciences). Seeking to overhaul all of philosophy and convert it to a new scientific philosophy,[34] the Berlin Circle and the Vienna Circle propounded logical positivism in the late 1920s.
Interpreting Ludwig Wittgenstein's early philosophy of language, logical positivists identified a verifiability principle or criterion of cognitive meaningfulness. From Bertrand Russell's logicism they sought reduction of mathematics to logic. They also embraced Russell's logical atomismErnst Mach's phenomenalism—whereby the mind knows only actual or potential sensory experience, which is the content of all sciences, whether physics or psychology—and Percy Bridgman's operationalism. Thereby, only the verifiable was scientific and cognitively meaningful, whereas the unverifiable was unscientific, cognitively meaningless "pseudostatements"—metaphysical, emotive, or such—not worthy of further review by philosophers, who were newly tasked to organize knowledge rather than develop new knowledge.
Logical positivism is commonly portrayed as taking the extreme position that scientific language should never refer to anything unobservable—even the seemingly core notions of causality, mechanism, and principles—but that is an exaggeration. Talk of such unobservables could be allowed as metaphorical—direct observations viewed in the abstract—or at worst metaphysical or emotional. Theoretical laws would be reduced to empirical laws, while theoretical terms would garner meaning from observational terms via correspondence rules. Mathematics in physics would reduce to symbolic logic via logicism, while rational reconstruction would convert ordinary language into standardized equivalents, all networked and united by a logical syntax. A scientific theory would be stated with its method of verification, whereby a logical calculus or empirical operation could verify its falsity or truth.
In the late 1930s, logical positivists fled Germany and Austria for Britain and America. By then, many had replaced Mach's phenomenalism with Otto Neurath's physicalism, and Rudolf Carnap had sought to replace verification with simply confirmation. With World War II's close in 1945, logical positivism became milder, logical empiricism, led largely by Carl Hempel, in America, who expounded the covering law model of scientific explanation as a way of identifying the logical form of explanations without any reference to the suspect notion of "causation". The logical positivist movement became a major underpinning of analytic philosophy,[35] and dominated Anglosphere philosophy, including philosophy of science, while influencing sciences, into the 1960s. Yet the movement failed to resolve its central problems,[36][37][38] and its doctrines were increasingly assaulted. Nevertheless, it brought about the establishment of philosophy of science as a distinct subdiscipline of philosophy, with Carl Hempel playing a key role.[39]

For Kuhn, the addition of epicyclesin Ptolemaic astronomy was "normal science" within a paradigm, whereas the Copernican revolution was a paradigm shift.

Thomas Kuhn[edit]

In the 1962 book The Structure of Scientific RevolutionsThomas Kuhn argued that the process of observation and evaluation takes place within a paradigm, a logically consistent "portrait" of the world that is consistent with observations made from its framing. A paradigm also encompasses the set of questions and practices that define a scientific discipline. He characterized normal science as the process of observation and "puzzle solving" which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift.[40]
Kuhn denied that it is ever possible to isolate the hypothesis being tested from the influence of the theory in which the observations are grounded, and he argued that it is not possible to evaluate competing paradigms independently. More than one logically consistent construct can paint a usable likeness of the world, but there is no common ground from which to pit two against each other, theory against theory. Each paradigm has its own distinct questions, aims, and interpretations. Neither provides a standard by which the other can be judged, so there is no clear way to measure scientific progress across paradigms.
For Kuhn, the choice of paradigm was sustained by rational processes, but not ultimately determined by them. The choice between paradigms involves setting two or more "portraits" against the world and deciding which likeness is most promising. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn's position, however, is not one of relativism.[41] According to Kuhn, a paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm.

Current approaches[edit]

Naturalism's Axiomatic assumptions[edit]

All scientific study inescapably builds on at least some essential assumptions that are untested by scientific processes.[42][43] Kuhn concurs that all science is based on an approved agenda of unprovable assumptions about the character of the universe, rather than merely on empirical facts. These assumptions—a paradigm—comprise a collection of beliefs, values and techniques that are held by a given scientific community, which legitimize their systems and set the limitations to their investigation.[44] For naturalists, nature is the only reality, the only paradigm. There is no such thing as 'supernatural'. The scientific method is to be used to investigate all reality.[45]
Naturalism is the implicit philosophy of working scientists.[46] The following basic assumptions are needed to justify the scientific method.[47]
  1. that there is an objective reality shared by all rational observers.[47][48] "The basis for rationality is acceptance of an external objective reality."[49] "Objective reality is clearly an essential thing if we are to develop a meaningful perspective of the world. Nevertheless its very existence is assumed." "Our belief that objective reality exist is an assumption that it arises from a real world outside of ourselves. As infants we made this assumption unconsciously. People are happy to make this assumption that adds meaning to our sensations and feelings, than live with solipsism."[50] Without this assumption, there would be only the thoughts and images in our own mind (which would be the only existing mind) and there would be no need of science, or anything else."[51]
  2. that this objective reality is governed by natural laws;[47][48] "Science, at least today, assumes that the universe obeys to knoweable principles that don't depend on time or place, nor on subjective parameters such as what we think, know or how we behave."[49] Hugh Gauch argues that science presupposes that "the physical world is orderly and comprehensible."[52]
  3. that reality can be discovered by means of systematic observation and experimentation.[47][48] Stanley Sobottka said, "The assumption of external reality is necessary for science to function and to flourish. For the most part, science is the discovering and explaining of the external world."[51] "Science attempts to produce knowledge that is as universal and objective as possible within the realm of human understanding."[49]
  4. that Nature has uniformity of laws and most if not all things in nature must have at least a natural cause.[48] Biologist Stephen Jay Gould referred to these two closely related propositions as the constancy of nature's laws and the operation of known processes.[53] Simpson agrees that the axiom of uniformity of law, an unprovable postulate, is necessary in order for scientists to extrapolate inductive inference into the unobservable past in order to meaningfully study it.[54]
  5. that experimental procedures will be done satisfactorily without any deliberate or unintentional mistakes that will influence the results.[48]
  6. that experimenters won't be significantly biased by their presumptions.[48]
  7. that random sampling is representative of the entire population.[48] A simple random sample (SRS) is the most basic probabilistic option used for creating a sample from a population. The benefit of SRS is that the investigator is guaranteed to choose a sample that represents the population that ensures statistically valid conclusions.[55]

Coherentism[edit]


Jeremiah Horrocks makes the first observation of the transit of Venus in 1639, as imagined by the artist W. R. Lavender in 1903
In contrast to the view that science rests on foundational assumptions, coherentism asserts that statements are justified by being a part of a coherent system. Or, rather, individual statements cannot be validated on their own: only coherent systems can be justified.[56] A prediction of a transit of Venus is justified by its being coherent with broader beliefs about celestial mechanics and earlier observations. As explained above, observation is a cognitive act. That is, it relies on a pre-existing understanding, a systematic set of beliefs. An observation of a transit of Venus requires a huge range of auxiliary beliefs, such as those that describe the optics of telescopes, the mechanics of the telescope mount, and an understanding of celestial mechanics. If the prediction fails and a transit is not observed, that is likely to occasion an adjustment in the system, a change in some auxiliary assumption, rather than a rejection of the theoretical system.[citation needed]
In fact, according to the Duhem–Quine thesis, after Pierre Duhem and W. V. Quine, it is impossible to test a theory in isolation.[57] One must always add auxiliary hypotheses in order to make testable predictions. For example, to test Newton's Law of Gravitation in the solar system, one needs information about the masses and positions of the Sun and all the planets. Famously, the failure to predict the orbit of Uranus in the 19th century led not to the rejection of Newton's Law but rather to the rejection of the hypothesis that thear system comprises only seven planets. The investigations that followed led to the discovery of an eighth planet, Neptune. If a test fails, something is wrong. But there is a problem in figuring out what that something is: a missing planet, badly calibrated test equipment, an unsuspected curvature of space, or something else.[citation needed]

One consequence of the Duhem–Quine thesis is that one can make any theory compatible with any empirical observation by the addition of a sufficient number of suitable ad hochypotheses. Karl Popper accepted this thesis, leading him to reject naïve falsification. Instead, he favored a "survival of the fittest" view in which the most falsifiable scientific theories are to be preferred.[58]


THANK YOU.✌✌✌👮👮
HAVE A NICE DAY....


AND SUBSCRIBE TO OUR CHANNEL FOR MORE GO TO HERE=https://www.youtube.com/channel/UCef9xci5-1iFZhXLV_XgqJQ?view_as=subscriber
     https://www.youtube.com/channel/UCef9xci5-1iFZhXLV_XgqJQ?view_as=subscriber


Comments

Popular posts from this blog

youtube story in 5 minutes.everyment

how to get pubg.everyment

how to travel.